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1. INTRODUCTION 
 

The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth’s 
surface relies on the capability of imaging spectrometers to provide a large amount of information at each 
pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented 
volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, 
routinely produces image cubes with 224 spectral bands (Green, 1988-2000). This undoubtedly opens a wide 
range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In 
fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the 
hyperspectral domain, because of the size and high dimensionality of the images. 

Hyperspectral unmixing or linear pixel unmixing is becoming increasingly popular for the analysis and 
interpretation of hyperspectral images (Martínez et al., 1999). The basic assumption is that the signal received 
from each pixel can be considered as a simple linear combination of the spectral contributions of all pixel 
components. The technique, therefore, decomposes the scene in such a way as to recover the fractional 
contributions of the fundamental components or “endmembers” (as abundance or fraction images). This 
provides a means of extracting sub-pixel information from the scenes, which is particularly advantageous 
when the size of the interesting ground elements is much smaller than the image resolution and there is 
dominance of “mixed” pixels. 

Unsupervised clustering is a challenging problem in many areas of data analysis (Antonille & Gualtieri, 
2000). It can be stated as follows: given a set of N data points in a feature space of D dimensions,  
 

{ } N..., 1,i ), x..., , x,x( x,R x..., , x,x iDi21ii
D

N21 ==∈ , (1) 

 

we wish to characterize K clusters for the data, where K is obtained from statistical information about the data 
using some distance metric, 
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The principal characteristic of unsupervised clustering is that it does not incorporate any previous knowledge 
about the data. Since ground truth data in remote sensing is expensive and hard to obtain, the use of 
unsupervised procedures has become more relevant in this field during recent years. In particular, several 
unsupervised procedures to process hyperspectral data are available in well-known commercial software 
systems as Research Systems ENVITM. 

The application of neural networks to perform unsupervised classification of hyperspectral data has been 
tested by several authors (Jiménez et al., 1999) and also by us in some previous work (Aguilar et al., 1998; 
Martínez et al., 1999; Aguilar et al., 2000a, Aguilar et al., 2000b). We have also focused on analyzing the 
intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process (Pérez et al., 
1999). The results shown in this work indicate that neural network models are able to find clusters of closely 
related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. 
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One of the most widely used unsupervised neural network algorithms is the Self-Organizing Map (SOM), 
proposed by Kohonen, 1995-1997. This approach has been successfully applied in many different fields, 
including image analysis and computer vision, handwritten text recognition, analysis and recognition of 
human voice and telecommunications. Some reasons for using SOM to perform hyperspectral analysis have 
been described by Bruske and Merenyi, 1999, who highlight the computational speed provided by this method 
when implemented by hardware in the form of a massively parallel algorithm, surpassing the performance of 
conventional classification algorithms. Since the Kohonen algorithm is simple and intuitive, highly 
parallelizable (which can lead to an easy VLSI implementation based on systolic arrays or FPGAs) and is 
easily extendable to a high number of dimensions, we have selected it as our starting point to deal with 
hyperspectral data.  

The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised 
classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and 
the training algorithm are respectively described. Section 5 provides the results we have obtained after 
applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in 
the learning stage have been modified in order to obtain a detailed description of their influence on the final 
results. Finally, in section 6 we provide the conclusions at which we have arrived. 
 
 
2. DATA 
 

The hyperspectral unmixing algorithms proposed in this work have been tested using the public domain 
Indian Pines hyperspectral dataset, which has been previously used in many different studies. This image was 
obtained from the AVIRIS imaging spectrometer at Northern Indiana on June 12, 1992 from a NASA ER2 
flight at high altitude with ground pixel resolution of 17 meters. The dataset comprises 145x145 pixels and 
220 bands of sensor radiance without atmospheric correction. It contains two thirds of agriculture (some of 
the crops are in early stages of growth with low coverage), and one third of forest, two highways, a rail lane 
and some houses. Ground truth determines sixteen different classes (not mutually exclusive). Water 
absorption bands (104-108, 150-163 and 220) were removed (Tadjudin and Landgrebe, 1998), obtaining a 
200 band spectrum at each pixel. In order to reduce the time of training and testing, we have selected a 
subscene of the complete Indian Pines dataset (depicted in Figure 1) of size 68 samples x 86 lines at [27-94] x 
[31-116] in the original image, considering left in the full scene is at (1,1). In the selected subscene there are 
four known ground truth classes. 
 
 

    

Figure 1. A subset of the Indian Pines hyperspectral dataset with ground truth. 
 
 
3. TOPOLOGY OF THE PROPOSED NEURAL NETWORK 
 

The Self-Organizing Map (SOM) is based on competitive learning that leads to the construction of topologic 
maps representing class prototypes. In order to understand the topology of the proposed neural network, we 
first need to define some basic concepts. A neuron is an information-processing unit. Neurons are connected 
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by synapses or connecting links, each of them characterized by a weight. Specifically, a signal xj at the input 
of synapse j connected to neuron k is multiplied by the synaptic weight wkj.  

A neural network is a set of neurons organized in the form of layers. In the simplest form, an input layer 
projects onto an output layer of neurons. If the input layer has N units and the output layer has M units, each 
unit in the output layer owns N weights associated to the connections which come from the input layer, so that 
the set of neural weights is organized in the form of a two-dimensional lattice (WMxN).  

Our proposed network architecture is depicted in Figure 2 (Aguilar et al., 2000b). In our case, N corresponds 
to the number of channels of the hyperspectral image and M is the number of classes or prototypes to be 
extracted by the network. M must be carefully selected according to some metric (we will insist on this issue 
later on in the paper). There are feedforward connections from the input layer to the output layer and self-
feedback and lateral feedback connections in the output layer. These two types of local connections serve two 
different purposes: 

a) In the classification stage, the weighted sum iWx ⋅  (scalar product ) of the input signals x at each 

neuron i performs feature detection: each neuron produces a selective response to input signals.  

b) In the learning stage, lateral and self-feedback connections produce excitatory or inhibitory effects 
depending on the distance from the corresponding output layer neuron to the winning neuron 
(Aguilar et al., 2000c). Their associated weights are used to determine the Wi classification prototype 
for each neuron. 
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Figure 2.  SOM neural network topology including weight matrix W and self-feedback and lateral feedback 
connections. 
 
 
4. TRAINING ALGORITHM 
 

There are five basic steps involved in the training algorithm. These steps are repeated until the topological 
map is completely formed: 

a) Initialization: choose random values for the initial weight vectors, M,...2,1i),0(wi = . It is desirable to 

keep the magnitude of the weights small. 

b) Sampling: choose an input pattern x(n) belonging to a set of learning patterns or references, R. The 
selection is done randomly. 

c) Similarity Matching: find the best-matching (winning) neuron i* at time t, using the minimum-distance 
criterion as shown in the following equation, where dist is the euclidean distance: 
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d) Learning: adjust the synaptic weight vectors of all neurons, using the update formula (4), where η(t) is a 

learning-rate parameter, and [ ]( ))n(xi,i,t *γ  is a Gaussian neighborhood function centered around the 

winning neuron. The size of the neighborhood is determined by the reference distance )t(σ  (see equation 

5).  
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From the different options to select the previously mentioned parameters, taking into account the studies done 
in Aguilar, 2000, we have selected the following ones: 
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e) Continue from step b) until no noticeable changes in the weight space are observed, or until the 
maximum convergence time is achieved.  

In order to analyze a hyperspectral image using this algorithm, the network must be trained with hyperspectral 
signatures obtained directly from the image.  

The weights initially associated with each output layer neuron contain the hyperspectral signatures of some 
carefully selected pixels on the image (according with their spatial distribution). 
 
 
5. RESULTS AND DISCUSSION 
 

We have applied our proposed neural network to real hyperspectral data, described in section 2. Since there 
are several parameters involved in the training algorithm (described in the previous section) in this section we 
analyze the influence of those parameters in the process of class prototype extraction. In particular, the 
parameters that we consider in the present study are the number of iterations until convergence of the neural 
network is reached, the size of neighborhood function γ centered around the winning neuron, which is 
determined by )t(σ , and the number of neurons in the output layer of the neural network. 

The experiment is performed as follows. We train the network with all the hyperspectral signatures of the 
image. During the learning stage, we go through all the pixels of the image starting from a random pixel 
which is different in each of the iterations. Once class prototypes have been extracted, each pixel is classified 
and the confusion matrix (Chuvieco, 2000) is obtained. This matrix allows us to visualize winning neuron 
density for each class. 

The characteristics of the confusion matrix provides us with a comprehensive visualization of distribution in 
N-dimensional space, and may indicate the accuracy of the classification. Since each column corresponds to 
an output neuron, if one column presents high values for different classes, the overall accuracy of the 
classification should be low. In order to measure the degree of accuracy of the classification, we propose the 
following metric based on the topology of the confusion matrix: 
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Xmi is the maximum value for a column of the confusion matrix and Xsi is the sum of all the values in that 
column. Ei provides information about the capacity of each neuron to discriminate between the classes, and 
can be averaged for all the neurons in the network, providing a general measure about the accuracy of the 
classification. 

The performance of the SOM Neural Network depends on a lot of adjusting parameters: 

1. Number of output neurons: the ideal numbers of output neurons must be equal to the number of  
ground truth classes, associating exactly one neuron with one class. Usually this fact is not possible if we 
have a larger number of output neurons that ground truth classes. In this way, one correct classification 



uses several neurons for each ground truth class. In the Indian Pines ground-truth image there are 16 
classes (plus one class of unclassified pixels). 

2. Weigth initialization: the weights  wij initially associated with each  neuron contain random values. 

3. Order to scan the image: a random initial point of the image is selected at each iteration. 

4. Neighborhood function: as mentioned before, our choice for the neighborhood function is the Gaussian 
function. 

5. Reference distance σ(t): when the algorithm starts (t=1), the neural lattice is in a random state, the 
neighborhood function in these first iterations of the algorithm must have similar values for i  to include a 
large number of neurons and obtain some average values (high σ(0) values). When t increases, 
γ(t,i,i*[x(n)] )  needs to be adjusted  to reduce the number of neighbor neurons. Care must be taken into 
account  to avoid a quickly reduction  of the  number of neighborhood neurons, this reduction can be 
accomplished by changing  the reference distance σ (t). Our choice for the reference distance evolution is 
σ (t)=(1/t)2 

The parameters that we analyze in the present study are the number of neurons in the output layer, the number 
of iterations of the neural network and the neighborhood starting value 0σ . Next, some results obtained for 

the hyperspectral data described in section 2 are provided. In our first experiment, we have considered 16 
neurons in the output layer, 100 iterations and 20 =σ . Table 1 shows the resulting confusion matrix and 

Figure 3 shows the the resulting classification provided by the neural network using the previously mentioned 
parameters along with a greyscale representation of the confusion matrix shown in Table 1.  

A favorable result would be obtained if neurons activate exclusively for a particular class, discriminating this 
class from the others. In the confusion matrix, this can be graphically expressed as a row for which several 
columns present high values. In Figure 3 we can appreciate this situation at four different rows (2,6,10,11 and 
17). The fact that column values overlap indicates an inaccurate classification.  

Another indicator of the quality of the classification is the continuity of high values in the rows of the 
confusion matrix (this fact should produce bright contiguous rows in the confusion matrix image). In this 
experiment, the topology of the resulting classes is not preserved since we can appreciate several 
discontinuities in the learnt classes. The overall accuracy of the classification obtained in this experiment was 
60% according to the measure provided in equation 6. Nevertheless, we have to take into account that class 17 
in the confusion matrix (see Table 1) corresponds to pixels which have not been classified during the process, 
and we are considering these pixels when calculating the overall accuracy (if we do not consider these pixels, 
accuracy increases to 80%). 
 
  Neurons in the output layer 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CORN-NOTILL - 2 0 0 0 0 0 0 98 245 71 161 162 98 11 1 115 46 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GRASS - 6 242 9 253 160 52 9 0 0 0 0 0 0 1 1 5 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SOYBEAN 1 – 10  0 0 0 0 0 0 61 0 137 42 0 180 1 1 28 277 
SOYBEAN 2 – 11 12 0 8 0 0 0 471 3 521 136 8 471 66 6 17 207 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
 
 
 
 
 

 
 

Classes 

UNCLASS. -  17 121 66 186 161 101 56 127 19 72 24 54 37 191 165 39 36 

Table 1. Resulting confusion matrix for the Indian Pines dataset considering 100 iterations, 16 neurons in the 
output layer and 20 =σ . Non-zero cells in the matrix are highlighted. 

 



In our second experiment, we consider a smaller number of neurons in the output layer (5), 80 iterations and 
40 =σ . Figure 4 shows the resulting classification and the associated confusion matrix. We can appreciate an 

improvement in the topology of the confusion matrix (horizontal “lines” are more contiguous). In this case, 
the overall accuracy is 60%, without considering the unclassified pixels. 
 
 

  

Figure 3. Resulting classification and greyscale representation of the confusion matrix for the Indian Pines 
dataset considering 100 iterations, 16 neurons in the output layer and 20 =σ . The time used for this 

computation was approximately 60 minutes in an AMD K-7 600 MHz Processor with 128 Mb of SDRAM 
memory and IDL 5.4. 
 
 

  

Figure 4. Resulting classification and associated confusion matrix for the Indian Pines dataset considering 80 
iterations, 5 neurons in the output layer and 40 =σ . The time used for this computation was 20 minutes in an 

AMD K-7 600 MHz Processor with 128 Mb of SDRAM memory and IDL 5.4. 

 

Finally, in our last experiment we increase the number of neurons in the output layer (16), we decrease the 
number of iterations (20) and consider 120 =σ . The results are addressed in Figure 5. A general 

improvement in the topology is achieved in this experiment, and the overall accuracy in this case is 72%, due 
to the fact that we compensate the increase in the number of neurons with a subsequent increase in the number 
of neurons that are considered in the competitive step ( 120 =σ ). Table 2 shows other experiments we have 

performed over the Indian Pines hyperspectral dataset. 

As we can appreciate in Figure 5, the increase in the number of neurons produces some discontinuities in the 
topology, but the overall performance increases due to the reduction in the overlapping percentage between 
bright zones (high values) in the confusion matrix. These facts can be reduced increasing .0σ  

From the previously addressed results, we can conclude: 

1. The number of iterations needed to obtain an acceptable accuracy is low compared to other SOM 
applications. This fact is probably related to the high dimensionality of hyperspectral signatures. 



2. It is more efficient, in terms of accuracy, to increase the number of neurons and decrease the number of 
iterations. As we increase the number of neurons, the overall accuracy increases, but the topology of the 
classes is poor.  

3. When the SOM neural network has a large number of neurons in the output layer, the initial reference 
distance must be increased in order to maintain similar performance values in the competitive process. In 
this sense, σ(t) plays an important role. 

4. Further work is still needed in order to achieve a reasonable compromise between topology preservation, 
σ(t) function and overall accuracy. 

 
 

  
 

 

Figure 5. Resulting classification and greyscale representation of the confusion matrix for the Indian Pines 
dataset considering 20 iterations, 16 neurons in the output layer and 160 =σ . The time used for this 

computation was 7 minutes in an AMD K-7 600 MHhz Processor with 128 Mb of SDRAM memory and IDL 
5.4. 

 
 

Number of neurons Number of iterations Size of neighborhood ( 0σ ) Accuracy (%) 

400 10 74 
150 6 73 
60 2 73 
40 14 73 

 
 

16 

20 12 74 
60 6 70 8 
60 4 70 

150 2 66 
60 2 65 

 
6 

60 2 63 
80 4 60 5 
30 1 66 

Table 2. Other experiments performed over the Indian Pines dataset. 



6. CONCLUSIONS 
 

We have presented a new approach to unsupervised classification of hyperspectral images using a Self 
Organizing Map. The overall performance of the method has been tested by its application to real 
hyperspectral data. The availability of ground truth allows us to introduce a new statistical measure to 
quantify the accuracy of the resulting classification. Since the training stage of the neural network 
incorporates several parameters, we have studied the influence of some of these parameters on the final result.  
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